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Abstract 

Upon determination of a possible contamination threat in a water distribution network, a variety of 
response actions (e.g., public notification and operational changes) can be pursued in order to minimize 
public health and economic impacts and ultimately return the utility to normal operations. Flushing is a 
relatively common operational response option employed by utilities to address water quality concerns. 
Previously, an optimal hydraulic response tool was developed to help identifY the best hydrant locations 
to flush. However, in order to apply this tool the contaminant injection location needs to be known. In 
previous research efforts, either the injection location was assumed to be known, or a sensor coverage 
map, which displays all contamination incidents potentially detected by a sensor, was employed to 
identifY all possible injection locations. While the flushing locations selected for a known source location 
were effective in reducing impacts, the locations selected based on sensor coverage maps were not as 
effective. Therefore, in this study, a source location algorithm based on an event backtracking analysis is 
used to identify the most likely source locations. An example network model and multiple injection 
locations are used to evaluate the effectiveness of this approach. In addition, the reduction in impacts 
between the three different source identification approaches (i.e., known, sensor coverage map, 
backtracking) were compared. Overall, knowing the contaminant injection location greatly influences the 
effectiveness of the flushing response. For this study, the smaller amount of possible source locations, the 
greater the reduction in impacts. If only one source location is identified, the impact reduction could be 
as high as 98%. However, when 18 possible sources were identified from the sensor coverage map 
approach, only a reduction of 2% was achieved. 
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1. INTRODUCTION 

Since the events of September 11, 2001, water utilities have had increasing concerns about water quality 
and the possibility of accidental or intentional contamination events within a distribution network The 
U.S. EPA's Response Protocol Toolbox (U.S. EPA, 2003) provides recommendations on actions that 
water utilities can take to minimize potential impacts to consumers following a contamination threat. 
Detection, source identification, and consequence management are major steps in this protocol. Recent 
research efforts to aid in the first step, detection, have focused on the placement of online water quality 
monitoring sensors that together form a contamination warning system (CWS) (Kumar et al., 1997; 
Kessler et al., 1998; Ostfeld and Salomons, 2004; Berry et al., 2006; Propato, 2006; Murray et al., 2008; 
Ostfeld et al., 2008; Murray et al., 20 10). The overall goal of a CWS is to detect contamination incidents 
in time to reduce potential public health and economic consequences. To address the second step of the 
protocol, researchers are developing source identification methods (Shang et al., 2002; van Bloemen 
Waanders et al., 2003; Laird et al., 2006; Preis and Ostfeld, 2006; DeSanctis et al., 2006; DeSanctis et 
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al., 2008) to identify contaminant injection locations following successful detection of a contamination 
event. 

Should a CWS detect the presence of a contaminant in a water distribution network, the third step in the 
protocol, consequence management, must be employed. A variety of response actions must be examined 
in order to select the most beneficial consequence management strategy, including public notifications 
and operational changes. A relatively common operational response option utilized by water utilities to 
address water quality concerns is flushing. Previous research efforts (Baranowski and LeBoeuf 2008) 
used hydraulic/water quality modeling and optimization tools to guide the selection ofhydrant locations 
to flush and valves to close. The selection was based on minimizing the impact of a contamination 
incident in a water distribution system. In previous work, the contaminant injection location was assumed 
known prior to the implementation of a flushing strategy. However, during a real contamination incident, 
utility personnel might not have prior knowledge of the injection location. In this current research effort, 
the effect ofknowing the injection location prior to response activities is evaluated. Combining all three 
steps ofthe protocol together, three different methods to identify the contamination source in the example 
network are utilized. 

2. METHODOLOGY 

The objective of this research is to identify hydraulic responses that reduce the impact of a contamination 
event on a water distribution network following successful detection and source identification. Using a 
single network model, EPANET, fixed sensors, and a genetic algorithm, two contamination incidents are 
simulated and three strategies for identifying the contaminant injection location are used to compare the 
performance of each flushing strategy. 

Since in an actual contamination event the injection location of a contaminant which triggers an alarm at a 
sensor will most likely not be known accurately in real time, three methods to identify the source injection 
location were utilized: known, backtracking, and sensor coverage map. In the known approach, the 
contaminant injection location is known prior to the start of any response actions. This type of approach 
would be applicable if a criminal informed the water utility of the location or if clear evidence was found 
at the site. In general, this approach would lead to most effective consequence management strategy. In 
this paper, this approach is used as the baseline for the reduction in impact. The other two approaches, 
backtracking and sensor coverage map, are explained in more detail below. Once the contamination 
source location(s) have been identified, this information is supplied to an optimization routine which 
m1mm1zes the impact(s) by selecting nodal locations to flush the contaminant out of the distribution 
network. 

2.1 Backtracking 

In the backtracking approach, simulated contaminant concentrations at the monitoring locations and the 
contamination status algorithm (CSA) proposed by De Sanctis et al. (2009; 2006) were used to determine 
possible contamination source locations. By using a particle backtracking algorithm (Shang et al., 2002), 
as implemented in the pre-release version ofEPANE T-BTX (a backtracking extension to EPANET), to 
establish network flow paths, the CSA identifies all the possible contamination sources in space and time. 
The CSA assigns a contamination source status to each node-time pair: candidate (possible contamination 
source), safe (not a possible contamination source), or unknown (insufficient information to classify the 
source). Using the candidate status as an indicator, the possible contamination sources were determined. 
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2.2 Sensor Coverage Map 

For the sensor coverage map approach, the Threat Ensemble Vulnerability Assessment - Sensor 
Placement Optimization Tool (TEV A-SPOT) was used (U.S. EPA, 2009). Using fixed online sensor 
locations, contamination incidents at all of the nodes in the network were simulated and health impacts 
were calculated in TEVA-SPOT. A table in TEVA-SPOT lists the impacts, detection times, and detection 
sensor for all of the simulated incidents. With this information, the possible contamination sources to 
trigger an alarm at each sensor can be determined. This approach assumes that response actions are 
implemented immediately after the first alarm. 

2.3 Optimization ofFlushing Decisions 

The optimization approach utilized has been modified from the method proposed by Baranowski and 
LeBoeuf (2008). The same genetic algorithm within MATLAB (Math Works, 2008) was utilized to 
minimize the impacts of a contamination event by optimally selecting different flushing locations, 
however, the framework to simulate the incidents and calculate the impacts is different. Instead of using 
EP ANET toolkit function calls, components of the TEV A -SPOT Toolkit (Berry et al., 2009) which 
simulate contamination incidents and assess consequences were employed. In order to be applicable for 
response applications, the TEVA-SPOT components had to be modified. The component which 
simulates contamination incidents was modified to alter demands at node locations identified as hydrants. 
The component which assesses consequences was modified to include a new impact metric which is used 
here as the optimization objective. The new metric is extent of contamination over a specified period of 
time. The extent of contamination in the network was calculated for all pipes and times until the end of 
the simulation. The extent of contamination is calculated as follows: 

ExtentContamination = IcontLengthi,J 
i=I..N 

where i is the pipe number, N is the total number of pipes, contLength is the length of contaminated pipe, 
and j is time from the beginning of the simulation, tbeg, until the end of the simulation, tend· The 
contaminated pipe length is determined as the entire length of pipe if the concentration in the pipe is 
greater than zero. This metric is used since it captures all of the time steps in which a pipe is 
contaminated and allows the pipe to become uncontaminated and re-contaminated in different time steps, 
assuming that the contaminant does not adsorb to the pipe wall. Other metrics of contamination effect 
could be utilized. 

3.EXAMPLE 

The example network utilized was Network 1 from the Battle of the Water Sensor Networks (BWSN) 
(Ostfeld et al., 2008), which consists of 126 nodes, one reservoir, two tanks, two pumps, eight valves, and 
170 pipes (Figure 1). For this paper, sensors were located atJunctions 17, 21, 68, 79, and 122 (green 
stars in Figure 1) as determined by Berry et al. in the BWSN (Ostfeld et al., 2008). For purposes of 
simulation, a conservative contaminant with a mass injection rate of 8330 mg/min was injected at hour 
168 ofthe simulation for one hour. The overall simulation time was 336 hours, which captured the 
majority of the contamination spread. The initial simulation ran until detection by one of the sensors, 
where detection was considered as a concentration greater than 0.01 mg/L. 

Starting two hours after detection ofthe contaminant, flushing was initiated for eight hours. Two hours is 
an optimistic time period in which to confirm that contamination is occurring, estimate the possible 
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source locations and spread of the plume, determine the best hydrants to flush, mobilize the necessary 
crews and have them travel to the sites. This response time delay was chosen since it leads to a 
conservative estimate on the reduction of impacts. F o r the purpose of this paper, a maximum of 10 
flushing locations were chosen by the optimization algorithm. This number seemed reasonable based on 
information obtained from a partnering, middle-sized water utility, which stated that to avoid 
depressurization in their system, the maximum number of hydrants that can be flushed simultaneously 1s 
ten (Baranowski et al., 2008). The flushing discharge rate was set at 3.03 m3 /min (800 gpm). 

Figure 1. Schematic ofBWSN Net 1. Colored links represent different diameter pipes, with thicker lines 
being larger diameters. Colored nodes represent different base demands, with larger nodes being larger 

demands. The green stars denote the sensor locations, the blue triangle is the injection location for 
Scenario 1, and the purple diamond is the injection location for Scenario 2. 

4. RESULTS 

The first injection scenario, Scenario 1, was initiated at Junction 21 (blue triangle in Figure 1), while the 
second injection scenario, Scenario 2, was initiated at Junction 23 (purple diamond in Figure 1). The 
scenarios were selected since they were detected relatively quickly (i.e., within two hours ofthe injection) 
by the fixed sensor locations. Scenario 1 was detected by the sensor at Junction 21 at hour 168 with a 
concentration of2.96 mg/L. Scenario 2 was detected by Junction 68 at hour 170 with a concentration of 
0.71 mg/L. For each injection scenario, the concentrations at each sensor and for each time step were 
determined. This concentration matrix was supplied to the contamination source algorithm. Using the 
flush start time for each scenario, the junctions that could have been sources at hour 168 in the simulation 
are identified for the backtracking source approach. For the sensor coverage map approach, TEVA-SPOT 
was used to identify all of the contamination events which could be detected by each of the sensors. 
Table llists all of the possible source locations for the three source methods and the two scenarios. 
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Table 1. Source location junctions identified by three methods (known, backtracking, and sensor 
coverage) for two injection scenarios 

Scenario 
Known Backtracking Sensor 
Source Source Source 

21, 22, 24, 25, 
26, 27, 28, 43, 

1 21 20, 21 47, 48, 49, 50, 
51, 52, Tank 

130 

23, 30, 31, 53, 
23, 30, 33, 53, 54, 55, 56, 58, 

2 23 55, 56, 63, 64, 59, 60, 61, 62, 
67, 90, 91, 92 63, 64, 65, 66, 

67, 68 

The source locations listed in Table 1 were supplied as input to the optimal flushing method, which 
minimized the average impact across all of the injection locations. A total of six different optimal runs 
were completed. Each optimization analysis ran for 51 generations with a population of 50, for a total of 
2600 simulations including the initial population simulation. The genetic algorithm selected the number 
oflocations flushed and the locations to flush. The maximum number oflocations that could be flushed 
was set at 10. All of the junctions in the model, or 126 locations, could be used as flushing locations. 
The flushing locations selected for the six optimizer runs are listed in Table 2. Each ofthe runs chose at 
least six locations to flush, with half of the runs selecting the upper limit of 10 locations. 

Table 2. Flushing junctions selected for two scenarios and three source identification approaches. 

Scenario 
Known Backtracking Sensor 
Source Source Source 

10, 11, 12, 13, 14, 89, 93, 104, 
5, 19, 30, 52, 

1 54, 59, 71, 74, 
100, 111 125, 126, 128 

82, 123 

3, 7, 13, 23, 33, 35, 48, 49, 
16, 57, 65, 81, 

2 31, 47, 52, 63, 63, 71, 79, 81, 
82, 83, 86 

81, 91 99, 114 

Table 3 lists the percent reduction in the impact measure from the base case of no flushing. For scenario 
1, the known source approach achieved the greatest reduction in impact of98%; with the backtracking 
approach having a similar percent reduction of 84%. Using the sources identified in the backtracking 
approach had better results than the sensor coverage map approach. The sensor coverage map approach 
had the lowest reduction in impact with 21% reduction. Since scenario 1 was detected early, a greater 
reduction in the impact was achievable. Scenario 2 was detected later; therefore, the impact was only 
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reduced by 47% for the known source approach. The backtracking source and the sensor coverage map 
approaches were only able to reduce the impacts by about 2%. 

Table 3. The percent reduction in the extent of contamination for the two scenarios and three source 
"d ffi f h 1 en 1 1ca wn approac es. 

Scenario 
Known Backtracking Sensor 
Source Source Source 

1 98.5 83.7 20.9 

2 47.4 2.4 1.8 

While the flushing locations selected for the backtracking and sensor coverage map approaches reduced 
the impacts by the percentages shown in Table 3, these locations might be able to reduce the impacts 
associated with the other identified source locations by a greater percentage. For the backtracking 
approach, the identified source locations and their associated impact reductions for each scenario are 
listed in Table 4. The average impact reduction was 90% and 76% for scenarios 1 and 2, respectively. 
For scenario 1, the average impact was reduced by 90%, while the true source location was reduced by 
84%. Eight of the identified source locations for scenario 2 were reduced by at least 80%. Unfortunately, 
the true source location was only reduced by less than 2%. 

Table 4. For the backtracking approach, the reduction percentage for each of the identified source 
locations. 

Scenario 1 Scenario 2 

Source Percent Source Percent 
Location Reduction Location Reduction 

JUNCTION-20 95.91 JUNCTION-23 2.39 

JUNCTION-21 83.71 JUNCTION-30 94.36 

JUNCTION-33 52.65 

Average 89.81 JUNCTION-53 80.37 

JUNCTION-55 85.76 

JUNCTION-56 87.75 

JUNCTION-63 97.88 

JUNCTION-64 97.47 

JUNCTION-67 98.23 

JUNCTION-90 75.22 

JUNCTION-91 92.25 

JUNCTION-92 42.58 

Average 75.58 

For the sensor coverage map approach, the optimization routine reduced the average impact by at least 
50%. Table 5 lists the source locations identified by this approach and their associated reduction in 
impact for each scenario. For scenario 1, five of the identified source locations were reduced by at least 
98%, however the true source location was only reduced by 21%. Sixteen of the identified source 
locations were reduced by at least 96%, while the true source location was reduced by less than 2% for 
scenario 2. 
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Table 5. For the sensor coverage map approach, the reduction percentage for each of the identified source 
locations 

Scenario 1 Scenario 2 

Source Percent Source Percent 
Location Reduction Location Reduction 

JUNCTION-21 20.87 JUNCTION-23 1.78 

JUNCTION-22 3.19 JUNCTION-30 99.15 

JUNCTION-24 78.47 JUNCTION-31 96.66 

JUNCTION-25 79.14 JUNCTION-53 97.49 

JUNCTION-26 2.26 JUNCTION-54 97.19 

JUNCTION-27 3.72 JUNCTION-55 96.83 

JUNCTION-28 2.18 JUNCTION-56 97.85 

JUNCTION-43 59.65 JUNCTION-58 56.43 

JUNCTION-47 79.74 JUNCTION-59 99.27 

JUNCTION-48 99.68 JUNCTION-60 99.30 

JUNCTION-49 98.62 JUNCTION-61 98.75 

JUNCTION-50 99.98 JUNCTION-62 98.96 

JUNCTION-51 98.32 JUNCTION-63 97.68 

JUNCTION-52 97.99 JUNCTION-64 96.89 

TANK-130 1.46 JUNCTION-65 97.36 

JUNCTION-66 96.23 

Average I 51.91 JUNCTION-67 98.01 

JUNCTION-68 97.63 

Average I 70.97 

5. CONCLUSIONS 

Following successful detection by a CWS, actions to reduce the impact of a contamination event must be 
implemented. One response action which can be implemented relatively quickly is flushing. To increase 
the effectiveness of the flushing strategy, the most beneficial hydrants should be selected. Knowing the 
contaminant injection location and network hydraulics prior to the start of any flushing strategy could 
assist the water utility in selecting better hydrant locations to remove the contaminated water from the 
network For this research effort, an optimizati on tool linked with a hydraulic/water quality model was 
utilized to select the hydrant locations. The optimization tool was supplied with contaminant injection 
locations identified by three different approaches: a known source, sources determined by a backtracking 
tool, and sources determined by a sensor coverage map. 

The three source location approaches resulted in different reductions of the impact. Knowing the source 
location resulted in the greatest reduction in the impact measure, while the flushing locations selected 
from the sensor coverage map approach decreased impacts by less than 20%. Overall, knowing the 
contaminant injection location greatly influences the effectiveness of the flushing response (Tables 3, 4, 
and 5). For this example network, when online water quality sensor measurements from a CWS are 
linked with a backtracking tool and optimal hydraulic response tool, the greatest reduction in the impact 
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of contamination event were achieved. To explore the applicability of this approach to real world 
systems, larger water distribution networks, such as the BWSN Network 2 and real world utility 
networks, will be used in future studies. In addition, a variety of injection locations and impact measures 
will be explored. Instead of minimizing the average impact over all possible sources, another objective 
function could maximize the minimum performance over all possible sources. 

Disclaimer 

This project has been subjected to the U.S. Environmental Protection Agency's review and has been 
approved for publication. The scientific views expressed are solely those of the authors and do not 
necessarily reflect those of the U.S. EPA. Mention of trade names or commercial products does not 
constitute endorsement or recommendation for use. 
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